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 The experiments of Eapitsa /1,27 and of Andronikaahvilt /37 and the ex-
poeriments with second sound showed that the theory of superfluidity, assumed”’
by Landau E, in hallum Qualitatively approached actuality; quantitative &is-
orepancies, however, were observed. Thus, the ralues ("n/p (the ratio of
that part of density connected with thermal motion to the full density of
helium II), obtained from experiments with second sound and from direct ex-
periments gn the "belng-carried-along (entrainment )® of Relium II by a pile
of oscillating discs ol~ssly located, are in very close agreement. But the
geasurements of inpulas rclative to the reactiocn of heat flov on a small vane .
give quantivies meveral times lese than expected on tbe basis of the hydro-
dynamis part of Iandau's theory.

The data obtained by Kessum, Saris and Meyer @7, and Meyer and Mslilnk
[ﬂ for heat-exchange in capiliaries and clots also do not fit qualitatively
{nto the framswork of the Lydrodynamic part cf Landau’s theory. Calculation
of tke basic constants of the microscoplc (miorocosmic) part of lendan'se
theory from the heat capacity C and entropy S and from the speed cof second
gound u, also iead to significantly different values. Iu a recent work of
hndaulw
obtaining, in the interval of temperatures from 1.3 %K to 1.7—1.8%K, an
agreement of theory with experimental data for C)S; and up,

Since ,‘ however, thers are already in the hydrcdynamic part of the
theory consideruble diacrepan:ies and noralignmsats with experiments, it is .
imposeitie to assume that Iandeu's theory of superfluidity of helium II.
describes fully and satiafactorily all the basic properties of heliuam II.
The recent works of Tisza also do not give the complete pilotare of helium IT's.
properties and are a mixture cof thermodynamic considerations with ideas frim

. ) - . i )

, at the cost of introducing & third now constuni; he euccesded 1n.
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Iandau's theory, not giving even an approximetely correct, in a cortaln region

of temperatures, empirical ratio £, © - Therefore, it ssams expeditious in

the dlscuselon “of-second “sound in' helium I, when uslng the basic ideas of ;
landau, to employ whenever possible the well-known thermodynamic quantities . N
e and relations and to introduce only such new concepts, without which 1t
I ) would be impossible to clarify the proverties of helium IT aod which flow
directly from expariments.

Fapitsa, In studying the properties of hellum II, dlscovered that %he

flow of heat flowing out of a capillary, in contrast with ordinary flntdity,

propagates not uniformly to all sides, but possesses the oharscter of an

extremely set, directed flow or stream constant up to distanses at least

30 times the diameter of the capillary. Durinyg this strongly dirsctional .

e streaming, the flow of heat exerts considerable pressure on any vane placed A
EEE in the stream or current; that is, the heat in helium II poasessea the
' property of inertia.

At the same time, Eapitsa revealed that helium II flowing through thin
glots and caplllaries does not experlence any viscous forces and does not :
carry with ltself any heat. : : 4

Andronikashvili established that a pille of disks clogely located ons next
tc another, performing torsionel wvagfllations, "carries slong” or "entrains”
‘ with iteelf not the whole mass of helium II, but only e part of 1t; during
e this “entreinment,” the portion of the "entrainable” liquid, that ie, that
BdR part able to be dregged along by the disks, varies with temperature, sfter-
% reeching unity at the lambde point { A -point). :

By comparing the experiments summarized above, it 1s natural to assume,
as oven Landau did, that the heat links (takes up) with its motion not all
the helium, but only = part of it, equal to the rho-ratio @,/ vhere

; is the denaity of helium II and P (subscript “n" means "normal”) is that

. yert (portion{ Sf the density linked or comnscted (taken up) with the thermel
o movement. The remaining part of the density ¢ 1s that part of the super-
fluid holium svch that: @=fn -+, (subscript "s” means "superfluid”). Such
a 2ivision of ° 1intoE, and ¢; does not at all imply that part of the atome s
of kollum constantly remains in the unexcited state, and part in the excitea; - R e N )
N it amly permits ome %o draw up a more grarhic picture for describing the L R .
* properties of helium IT. CEL R RN a .

Tn accordance vith the experimencs of Eapitsa, the difference in heat
content Q betwsen that superfluid part of helium II flowing through a
capiliary and helium IT in the ordinary state 1s equal to ans T8, vhere T
is the absolute temperature and S 1s the ontropy. It is lcgical, therefure,
%o assume that all the heat is comnnected (bond) with only the normal part of
helium IT; taerefore, during flow of the heat of density w, the welocity of
motion of the normal part of helium II will equal:

va=w/p ST, (1)
and the impulse correspomding to heat flow 18 CmVe . . The ordinary flow

of helium II is defined ag j={,, v, 4+ psVs Wwaere V: 1s the Telooity ¢ .
the superfluid part of helium II.

The impulse of heat flow or its proporty of imsrtia is a new physical .
concept, and the dimension of inertia of heat flow (» 18 a new physical
quantity. As for other assumptions made, the density of kinetic energy in B
helinm IT i éefinsd, 26 axown in Lifshite’ work (10), in the form of a sm :
thus: :

s=lhenvh + /4 b v, e

that is, energy does not equal zero £9¢Cwhen the current may e tero:
7’, == () ; non-zero ensrgy eXists Auring the [resencs of heat flowv.

N ’ ‘ -2.

- ColesEnty,

fiaadd 1 . -3 . <. R § > . .
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An extremely small coefficient of themal expansion alpha OX also appears
to be & peculiarity o helium II: €=/(3p/3 T)=a=0—2 /. degres, which fact
leeds practically to & nondependence bmcueen mechanicel and thermal motion;
that 1s, an increass in temperature almost doss not cause any incresse in
pressurs, and’ vice versa. This aleo leads to the fact thag, with acouracy
up to 1. --2 percent, it 1s possible to set up the following relaticms:

(35/9T), = (38/3T), = c/T- (3) |
(Op/ap)s = ( Op/3¢), = 3p)de. %) i

Rk This lest case permits one to solve the problem relating to the propa- : ' Bes
: gation of ordipary and second sound indeperdently. ' Actually, frem the !
: equations stating the law of conservation of mass
3(0/91“ “+ i J'--——O, (s)
and Newtcn's law ! ' P
3j/ot + vp=0, (6)

and after substituting VP=(dp/Jp) V¢ ard eliminating, by &ifferentiation,
oriinary flov J' , we then have:

oloti=(op/dp)be, 6') e >

that is, we then have the equaticn expressing the propagation of ordinary
gound with the velooity:" w=(op/dp) A,

In order to aolve the problem relating to second sound, we shall
employ the law of conservation of heat:

e COIT)ot) Fdiv w=0, M

vhich can be described in such a simple form as this, by taking the relations

(3) into account. Further, let us employ the peculiar property of inertia of

heat flow in helium IT. Let us assume, on the analogy of Gogate and Pathak's

formulation [11/, that the vibrations of secord scund IrocTess reversibly; that
is, strictly obey the second law of thermodymamica: )

dAIW=dT/T (8)

o vhere 4A 18 ww work contained on account of the diffeence of temperaturs &
' during the transfer of a quantity of heat W at a temperatury /7 . let us
choosc a layer dx in which the temperature varies by d4F; then througan a wmit
surrace in time dt thors will issus a quentity of heat berw, dZ which
causres a variation in the kinetic energy of a vait surface of a layer dx, in
the amount J4=4xss &and in accordanse with (B)szs/wxdt.—,{r/r or : .

Tlejat)=—wvT: (9)

0 the minus nign arises from the face that for any wxthen ;> is positive only
vhen 377J)x {4 :
We notice that in eguation (7) it would have been necessary to add a term
os/It indicating the kinetic energy cf heat flov which is converted -
during vibrations into thermal energy, anmd back; however, this term will be

of the secoml cxder of smallness relative tc the dasic vidration and we can
neglect it here, as well as all other terms of higher crders of smaliness.

-3
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Further, by utilizing the fact that, becanse of the smallness of the ”
soefficient of thermal expansion during thermal oscillations of 4 , 1t s
_possible to set 1t equel to zero, we then have: twe.m/l-te.,‘.v;.iztﬂfcm‘&/%
or by substituting u, according to formula (1): ‘

§=p wi/2pe S*T* - (10)
By substituting dE_P'-‘“"/W/PPS ST * 1n (9), we then have:

Iw/otmm —(pes S* T/ ) ¥ T- ()

By vliminating, by means of differentiation, w fram (7) and {11), w then
obtain :

T= (:5*T/p, C)4T. ‘ (12)

The last equation represents the law stating the propagstion of ssocnd
sound with the velocity:

u,=(€:5*T/e, C)% (13)

Tt is worth noting thet rejreseatstion of the denaity of Ximstic
ensrgy during thermal motion in the farm (2) sxd relation (1) de met
aypesr pogeible together. It ie fully persdssible 4o remwsent ey in
the following form:

; ‘em,«w‘y;‘ o (2a)

thus elimirating the artificial division of helfim II info & superilayd
ani a normal part.

In the , - - o
ot Sreer vitn (7 oty e PATS wia O % IO

wyw= (Pu CT) =V (134)
Compering (13) and (13s), we comoluded that m mep, /s ST %

Ly 1n obviocus, 1t is possidle to detarmine frum experimente with second
somd the values of M or €y, ; the prodlem, hovever, oconceining the imprlse of
heat flov renains cpen; that is, expression (1) cazmot be verified (jroved)
by expelimants with second gourd. That the quextion comcerning Ww experi-
montal verification (test or oheok) oPrelation (1) ¢s not a wrivial cne ia
obvicus from the experiments of Kapitet /i, vhere the valuga for impulse
turn out to be considersbly lsss (approximately two times less) than ex-
pected on the dasis of “oxmxle (1). .

As 1s wall kmown, by solving the equation TamalAT cne obtaine frnaticus
of the form £(t Fx a.,j + Thevefore, for waves ted, with the veléetty
%, , Vo bave 9T/ fme =y, AT. By using Pczamla (T), we ovain Cuyd Temdivw
or $1v (o CTuy Jodww, VhaT® £, C Ak, &y scastazte. ' 3¢ 7o dnote the
variable peart of temperriwre T by T', then from the preceding eguation thexe
resultc a relation botweon whe oscillation of heat-flrw and fhat of temperature
in & traveling vave of seccnd sovad: .

eCT ymw. . (1)

This formuls ostabliches the coanestion mot only bebwosn axplitudes, dut
also betwesn ths phases of oscillations of temperature and heat-flow.
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The density of kinetic energy may be vrité&: down, with tht.a use of
formlas (10) and (13) for, for ancther variation, (2&.5 and (138)7, in the
form:. . R S . : T

-3
Emw /200 Ty .
e 2 (15)
By substituting s with T' according to formmla (14), we obtain:
en=pCT'*2T. (16)

¥he epsilon sub-pi (&7 ) represents the density of potential energy,
vhich during the weve processes everywh.re eguals the density of klnetic
energy {sub-pi in gy denotes "potentisl™).: If by T' amduy we denote the
emplitudes of oscillations of temperature amd heat-?lov, then the average
flow, with respect to tims, of the snmergy of second sound 1s:

q=Ya(60+ & o) Ua™ Wi Us /2 pCTur=pCT %, aT17)
or by subatituting w, - T,“ according to formmla (14), ve obtuin:
g=T, wo/2T (17)

This expression in sscond gound appears analogous to Poymting's wector im -
electromagnstic vibrations.

We now prooeed 4 the condltisns governing the excitation and propage-
tion of second aouxd in heliuwm IT. Lifshits Qlscussed several metheds of

radiating second sound; however, they were all hardly applicsble in practioce.

The most effective method among them represented radiation from a surface
wvith a periodically varying temperaiure; that is, with conditions at the
boundary represented by the relation: T = T & iwb.

For high temperatures and radlation of sound in a gas, the thermal capaocity
of metals £s found to be considerably greater than the thermal capacity of
gases; sherefore, this formnla of Lifsh:ts does not represent the work of
forming a surface with periodically varylng temperature. Wente [Ig] actually
construoted such a “thermophone™ and oarried out tests on {t.  For lov tem-
peratures the thermal capacity of heliuwm II 13 considerably greater than the

thermal capsslty of metals, and the formation of a surfece with a given (Iixed)

variation of temperature during arbitrary heat-flow seoma to be an extramely
compliouted probisam to solve.

In the works of the author [1'}_7, there wers twc methods used t. radiate
serond sound: thermal method and flltration method. The th. .mal method
represents the radlation of ascond sourd by a variable flow of heat waich is

generated by a heat-source without inerti=m during through-peasage by msans -r-fi

1ts variable current (flow); that 1s, with the condition at the boundary
(for zwe 0):

e, lWh, =0 (18)
The steady heat-~-flow resultiné for this condition, in view of the linearity

of the equations, doee not influence the propagation o sesond -osund, an® the
quadratic (seocond-pover) effects turn out to be insignificant. The condition

Jas 0 and the equating to zero of the coefficlent of thermal expansion leads -

to the excitation of only meccund sound, the traveling wave of waich will
have the following form:

- (T=%/42), Tim T, @i (F=R/42)

(19)

where, in accordance with (14) Tf awte, /P Cyz.

-5 -
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The second metiod relating to the radiation seson: sound copeists of the
périsdic "punchiag" of nelium II thrdugi a filter. 'If thé Tilter consists of
very fine pores, then only the superfluld part of helium IT will pass through
these pores; that is, at the boundnry (x==0):

T==4,6*%%, w=0. (20)

With such a boundury condition it ie imposgible to satlefy separately both
the wave of ordinary sound aad the wave of second sound, because for secend
sourd J= and, in ordinary sound, helium oscillates as a whole an’ W® 'ST; ' X
theoefore, the solution 1s successfully found in the form of two WAVes. namely. ‘
ordinary and second sounda: :

4 '—?—jaa&vﬂ’vz/u, )' %-‘wzeeiw(r—vaa). (21) R

These bwe weves satlufy the bonndary conditions for xed.
— : S | ; = o,
we= s ST, Ta==i,ST/eCuss 4,7 (22)

The Intensity of oscillatlions of the second sound, in acoordance with
(::'{]).,bwill be‘?'z,":S,'TJ:'/:ZPCi(,_o and the intensity of ordinary sound
W e: .

—— &
1= “, /29
The ratio of these two intensitles are:

%/ 9, =S*T/Coe, s (23)

At 2°K, this quantity amcunts to 0.1, but at lower temperatures it 1s still
leas. Thus, the intensity of ordinary sound during exoitation by the filtratlon
method ls corsiderably grester then the intensity of the slmulteneously radiated
gsecond sound.

The amplitudes of osoillations Of pressure and density in ordinary sound is
determined acoording to formulas (5) and (6):

Pre=u j,0 Co™j, [, . ()

R R The osclllations of temperature in ordinary sound will be caused only on e
! agsount of adjabdatic compression {ocondensation) ant axpansion; that is, P it o
T}'. =(9T,“'ap)w, Y4 « Acoordiug to the well-known thermodynamic equality, ’ .

, have:
y we have (aT - (aS/ap)r__'[(_O_}_’) -l
op /s (35/9T)e ~ C\3T/x ocC

vhere X 1g the coefficient ~f heat expansion; thersfore, the amplitude of
oscillations of temperature in oxdinary sound ls: '

Too=(a T/e C) pio™ (%, T/pC) jy - (25)
The ratio of the amplitudea of oscil]‘.af.iona of temperaturs in sscond oound
and in oruinary sound equals: To,/T;0™=S/&s, ks . At 29K this

quantity 1s of the oxder 20, und at 1.6°K {t ie around 10; that ie, ths
L obeervation with respect t> osclllations of temperature !s oonaiderably
mora favorable for second nound In comparison with ordinary sound.

: - The occillatlons of prussure and density in seocond apund Lo caused .
- only on account of the heat-rjurce and cold-sink. To detern!.na @h ard Py
- o let us usc sguailons (5) and (6) and the proparty: d/t=-nily true
. for ali guantitiea in waves of second sound; then '=J,/ym and l'a-'PS/Va‘,
that ie, ?'a"fi/u: . Further repreceat ing e he variables m am
/ . -
Ti Ve have: pé_(ac/ap)rp,’_-ﬁ-(al'/ﬂlp 7;_—/;"_ u~2—uap To
Substituting here (.S ; We have:
' ! "("?“u‘ ® 2 o ’ r'
Posm _Wf T,_ AL e “PNITJ. y Pam— 0l a .

{2kn)

N
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(A more exact relation between the amplitudes‘L oscillaiions of density,
pressure and temperature in.escond. and ordinery -sounds-1s-1introduced im the
work of Lifshits [f97) Comparing (24a) and @4), we obtaln for the ratip of
amplitudes of oscillations of pressures and densities in second and ordinary
sounds, during radlation by the method of filtration, the following expression:

Pdolply=au. ST/u, C, eio leie=auU ST/, C, (26)

For 2-°/‘\',/"af,//v,:,z3'/0"“’. and @, /&0 723/ 0=* ; that is,
ogclllations corresponding to second sound almost completely mask ordinary
sound.

Now let us study the case of standing wavee.in a cylindrical pipe, ons
end of which ls covered by a flat osciilator and the other end is covsred
with a flat reflector. Let us assume that the attentuation {dying-out or
extinguishment) per unit length of the tube equals gamma Y’; that is, ths
solution of the sonic problem will be of the form v axp iwt‘:ﬂ:()’-l-iw/u)g.
If the radiation is induced by the thermal mothod, then it is pomaible to
consider that only second sound ls propagated. Then the boundary conditions
may he written In the form:

j==67, W= 20, For xem 0, gm= g, v fop neal

(where I 1s the length of the tubs)
The solution ie obtained as the sum af two wavsas traveling in bpposits
directions: :

W"‘“W,G"“‘"—()*—f-;‘w/a_\)x+u,,e‘“’+(r+iw/u;)x
theretors, '

Wt w0, =y, W, 8T (Vhiwfua)l 4 g0, elrtinma)bng(en)

Hence:

Wy = aua'/[[_..c—l (r"."""/u.;))]‘ ' (28)

From the lagt formula 1% is obvious tha* rassonances will hold for .
Wi/ Y3 =209 where mm 2.3, . If y? 1o small, ttan during
regonanoe: i

W= /| —a—iri)a /2y, (29)

For sfm‘.l disturbances; that ia, for w?/uann'.'r-;-‘ga/uaaheu wédju, ta .
small, we have:

Wy fowy (it dwd)uy) " an 108 VLV 4 bod fuy ) 2 )4 (30)

As 1s obrious from (27), the noSes of oscillations of heat-flow will be
formed at the reflecting and radiluting sursaceo. '

In order to determine the osollla’ions of temperaturs, it is necessary -
to take into ocnsideration the faot that, for waves traveling in opposite
direotions, the osci{llations of temperature will be of different signs, if the
directione cf heat-flow are the same; thersfore, from (13) we have 7;’-3.,‘ /(M.C
‘ard Timm—w, /Pw, C and also:

At the boundaries during small disturbances:

T={(wy (Y0 ) @L(Y) ¢ (w32 )] 7Hee

Thus, at the reflecting and radiating surfaces there will be loops (sat’nodes)
of temperature-oscillations and nodes of oscillations of flow. ’

Commeny,,

B *
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If one disturbs the resonance volume, so that the amplitude of oscillations
5f temperature is 'decreased by-‘/f , then - Lo B E -

yi=cod, /U, )

that is, by such a method 1t is possible to measure the cosfficien’ of attemx-
‘ ation (dampiog and drying out) of secénd sound. During resonance, we have A==0;
e therefors, from (32) and (33) we have

T =1w,/pCwdy: C(om)

In case of resonance during radiation by the filtration methad, the
matter becomes somewhat more complicated. Here it is necessary to consider 28
both sounda. Analogously to traveling waves, the solution can be resolved in- :
to parts corresponding to ordinary sound and to second sound:

5= j,; eiwt—(y, +iw/u,)3l+;,1eiw5+(r, -+ dw/u)x,
Wa =2y, i T~ Htiw/u ) x4 2, e ot (b iw/ma) %,
‘I‘ﬁa boundary conditions will be:

we==0, J==4, Fora=10
w=0, f==x0O Forx==]

[ Thersfore:
IntIn=4y; J',,e"(h ""’.“'/”I)2+J;1,6(>‘;+i“/ﬂt)1=0.(35)
Taking, further, (21) and (22) intc accouni, we have:
Wity , = —ds ST, wue._(n.;.;'w/h)1+wn¢(&+da/u,)l"0

Fram the last equatione there is obtained: ) 2 ) (3‘)
J"ﬂ‘j‘[[—e-z()/’_*_iw'[“,) 2]—, and wﬁl-—-\]‘ ST[I—C ()’;.4'1»/1(,.) 2}"“
e In case Ictt‘.\veak damping and small disturbance, we have the following:equation:
dn==hdo (it Ficwd fu;)” 5 and 1y~ % §o ST(Vatatiwdsfug )= -
Therefore, in the general case, resonance of ordinary and second sounds will
exist for various &3 . Taking (25) and (1h) into consideratina, wa obtain
“eg for emplitudes of oscillations of temperature at the loops (antinodes), and .,
;. consequently on the boundarios too: .

Ja - “-_Ll:,,_'.* .
o 4 1 =(ou, Tj, JeC){(y, )/)*-4-(0"1/’0)"]—'/" (37) »
To=ISTsolp Ca N Yata+ (e Ao U )2 ]~ s (38) | \ i
4« this manner, during radiation by the filtration methcd and during measurs-

moutr of temperature-osciliations, it 1as possible tov observe the resosnances of
both ordinary sound and second sound.

P

2 During resonance there is always set up such an amplitvde of cscillations .}
for vhich the loswes in the resonatsr are fully compensated by the energy of =
the emitter (radlator); thereforu, it sesms intaeresting to determine the :
quantity of energy entering the resonator. ) . . :

Ut In the case of the excitation of second sound by the thermal msthod, the
flow of energy from each anit of surface of the heat-gource on the bas's of
formuls (17} 1s equal to g=T,w/27 . For standing waves this flow
iy detrrmined ma the difference between tile learing (axit) and entering (init)
energies; that, is:

- - , ’ Y - )~
: , G (Tis Wia= Tio%02,) /2 Temlaulo —Wie) /2 022 €T
[Fy substituting T' acccrding to f:rmula (lbﬂ. If ve use the asthod of com-
plex variables; that fe, if we write »xw,efﬁ , then
| A Y. L
- Wi = wi,=Re (w,~ iy ) (¥ +wh)

Covrmarry 0 |

el

@

Sanitized Copy pproved for Relase 201 1/07/18 : CIA-DP80-00809A0060021102-2 -



] 50X1-HUM

L
Using (31) and the first of the bonndary cor’d&ions (27), ws:obtain

q=Re {TW*/2T}- (39)

This is the most gemeral expression for the flow of energy irn eecond sound.
It is noteworthy thet this equation holds true also for ordinary heat waves.

In the preceding discussions, it vas assumed that atteouation {damping)
represerts a volume effect. Under actual conditlonse, however, the attenunstion
(damping) 15 determined mainly by the thermal and viscous dispersion at the
walls and by the dispersion through the slots at the ends of the regonator.
By the expression ¥y ! , however, we understand some sort of effective
attenvation (damping), which decreases the amplitude of the wave returning to
the ‘emitter (radiator); therefore, it ias possible to mssume that the revealed
formulas will be approximately correct. Then on the basls of formula (3k4),
we will have:

9A=wjQ/apl' Twdy=p CTedy T,'2@/27,  (10)

where @ 1s the surface of the emitter (radiator). This expression deermines
the full power dischargeable Iin compensation for losses. The losses in the
general case can be broken down lnto three parts: (1) volumes, losses; (2)
losses on the surface; and (%) losses on the boundaries. The volume losses
ars fully determined by the properties of helium II and are characterized, as
in ordinary sound, by & quadratic (second-power) dependencs upon frequancy.
The surface losses consist of thermmsl and viscous losses. The thermal losmes
may be evaluated (calculated).

Since the thermal capacity of hard bodies at low temperatures are con-
siderebly less than the thermal capacity of bslium II, then it 1s possible to
assume that the amplitude of oscillations of temperature in helium of the
boundary of a hard bodiy is set (assigned) by th osclllatione of temperature
in helfum; that is, by the oscillations of second sound. If Ta= T & ix?
on the boundary, then the problem of thermal conduciivity within a hard body,
1n agreement with the equation £,(37/3%)=3(*T/?=2), leade to the solutlinon
in the form folloving: T=T7 ‘exp{—(iwCy/1) Kz}, where C, is the
volumetric thermal capacity (specific heat) and . 18 the body's thermal
conductivity. The flow of heat within the surface is determined thus:

W= T/dz)=T Vierc,.

Therefore on the basis of formala (59) for the absorbable energy,' e obtaln:
#r=(T"2/2T) (A€, /2) 2 (81)

Averaging ("neutralizing" or smoothing out) w'iu respect to the whole surface
for a einuscidal distribution of the amplitude on the surface gives, as this
holde true iu *he case of standing waves, the following expression:

¢=(T2/9T)( 20 Ci/2) "% (42)

The surface lossos caused by viscous forces (friction), which appear
during the movement of heat in hellum ITI aloung the walls, also can be calou-
lated. True, here it is necessary to use “he gquantity of impulse of heat-
flow; therefore, if it turns oyt thet the expression for impulse of heat-flow
15 needed exactly, then the gjYoulation given below demands correction. On
the basla of Landan's theory, in connection with motion in helium II, only
the normal part takes part (participates); therefore, the equatlion of viscous
motion at the wall has the form:

Cn(3vm)ot)=»(d%*v,/322).
whers the speed is directed along tiie svrface, end & s the coordinate
directed perpendicularly to the surface. For the case of aound where
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V=@ FWT L we mave iwp, D=y 3w, /32

Up=Upy (14 € =1 /D) s )2 1 T, (43)

The depth of penetration (permeation or inh‘tration) of the viscons waves
for Te=/.3°k and for ¥ ==/opcyclefiec i%e A== (20 /cofy, ) Vo mato—2

and for higher temperatures this depth is still less. Thersforse, riS»./
and it is possible, by neglecting (disregarding) the curving surface, to
caleulate the lowses for the flat vase by taking (assuming} for YV, the
amplitude of oscilletions of second sound. The calculation of losses for &
distribution of velocitles, in accordance with formala (43) for ordinary
fluids, 1s well known (14) and leads, after averaging ("seutralizing" or
smosthing-out ) with respect to time, to the following value:

Gy =5 (wbny/8) % (1)

per each unit of surface. Then in the glven case, instead of the full
velocity and density, whas enters (penetrates) is the velocity and density
of just the normal part, characteristically for helium II, but it does not
change the form of the fermula. In standing waves, ¥, varles along the
regonator sinugoldally, with an amplitude of variation equal to & sy ;
therefore, he averaging ("neutr:lizing" or smoothing-out) of over tha length
of the resonator leads to the quantity:

Ty=V5. (Wb 9/2) e (45)

per each unit of surface. Substituting 2wy from foraula (1) for vy
with the aid of formula (14) and taking into consideration that 7;-07’,,
wo then obtain for visoous losses per unit surface of the resonator the ex-
pression:

9= (T,2C%3 /452 T ) wpn/2) )i (46)
Thus the general expresdion for lveses can be written in the form:

Qq QT2 Llced: 06wJ¢ —_

“lo a, — o \ : 3
=472 (otn vt G (Gthfomm 1B )+ 2T,

or after reducing it, we have:

Cui ey VWA
- 2 Julny ) oo [Rely)  2AxT
why 72+%(/(’S TV2 te 2/t psc"’E' K

vhere (), 18 the gencral surface on which the losses occur aud kappa X ls the
coefficlent determining the boundary (rim) losees.

The fipal expression Jermite, with respect to the width of the resonanoce
ourve for various values of cu and 2 , one to determine the losses ln second
sound, and hence to Aetermine separately the volumatrioc, suriace; ama douvdary
losses.
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